Available Tools
Tiro MCP Server provides four tools optimized for efficient meeting data retrieval through the Progressive Disclosure pattern.search_notes
Search meetings and return metadata only~50-100 tokens per result
get_note_summary
Get AI-generated meeting summary~200-800 tokens
get_note_transcript
Retrieve full conversation transcript~3,000-5,000 tokens
get_note_documents
Extract structured data (action items, decisions)~300-2,000 tokens
Tool Comparison
| Tool | Purpose | Token Usage | Scope Required | Best For |
|---|---|---|---|---|
| search_notes | Find meetings | 50-100 per note | mcp:notes:read | Initial discovery |
| get_note_summary | Quick overview | 200-800 | mcp:notes:read | Understanding key points |
| get_note_transcript | Full details | 3,000-5,000 | mcp:notes:read | Complete information |
| get_note_documents | Structured data | 300-2,000 | mcp:notes:read | Action items, decisions |
Progressive Disclosure Pattern
Tiro MCP Server implements a Progressive Disclosure pattern to optimize token usage and response times.The Three-Stage Approach
1
Stage 1: Discovery
Use
search_notes to find relevant meetingsReturns: Note ID, title, participants, dateToken Cost: ~50-100 per noteTime: ~1 second2
Stage 2: Summary
Use
get_note_summary for key informationReturns: AI-generated summary, main topicsToken Cost: ~200-800Time: ~2 seconds3
Stage 3: Full Details
Use
get_note_transcript only when neededReturns: Complete conversation transcriptToken Cost: ~3,000-5,000Time: ~5 secondsWhy Progressive Disclosure?
Token Efficiency
Token Efficiency
Problem: Loading all transcripts for 10 meetings = 30,000+ tokensSolution: Load metadata first (500 tokens), then details for selected meetings onlySavings: Up to 97% token reduction
Faster Responses
Faster Responses
Metadata queries return in ~1 second vs ~5 seconds for full transcripts.Users get immediate results and can drill down as needed.
Better Context Management
Better Context Management
AI agents have limited context windows (e.g., Claude: 200K tokens).Loading only necessary data preserves context for analysis and conversation.
Usage Patterns
Pattern 1: Find and Summarize
Use Case: “What was discussed in recent marketing meetings?” Token Usage: ~1,000 tokens total (vs 15,000 with full transcripts)Pattern 2: Find Specific Information
Use Case: “Find action items from last week’s sprint planning” Token Usage: ~500 tokens (vs 5,000 with full transcript)Pattern 3: Deep Dive
Use Case: “Analyze entire conversation about project timeline” Token Usage: ~5,000 tokens (only when necessary)Tool Details
search_notes
Metadata-Only SearchReturns basic information (ID, title, participants, date) without actual meeting content. Always use this first to discover meetings.
content(optional): Search term for meeting contentcreatedAt(optional): Filter by date (ISO 8601 datetime)personName(optional): Filter by participant name
get_note_summary
Parameters:noteId(required): Meeting note ID fromsearch_notes
get_note_transcript
Parameters:noteId(required): Meeting note ID fromsearch_notes
get_note_documents
Structured DataExtract organized information like action items, decisions, and key discussion points in a structured format.
noteId(required): Meeting note ID fromsearch_notes
Best Practices
Always Start with search_notes
Always Start with search_notes
Never guess note IDs. Always use
search_notes first to:- Discover available meetings
- Get accurate note IDs
- Verify meeting exists
Prefer Summaries Over Transcripts
Prefer Summaries Over Transcripts
Use
get_note_summary before get_note_transcript:- 80% faster response time
- 85% fewer tokens
- Often sufficient for user needs
Use Documents for Structured Needs
Use Documents for Structured Needs
When looking for specific information types:
- Action items →
get_note_documents - Decisions →
get_note_documents - General context →
get_note_summary - Exact quotes →
get_note_transcript
Batch Metadata Queries
Batch Metadata Queries
Load metadata for multiple meetings at once with
search_notes, then fetch details only for selected meetings.
